An EMG-CT method using multiple surface electrodes in the forearm.

نویسندگان

  • Yasuhiro Nakajima
  • Saran Keeratihattayakorn
  • Satoshi Yoshinari
  • Shigeru Tadano
چکیده

Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols

BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Identification of Surface EMG Signals Using Wavelet Packet Entropy

This paper introduces a novel and simple algorithm to extract the feature from Surface EMG signals recorded from the skin surface over forearm muscles. Surface EMG signal is decomposed into 16 frequency bands (FB) by wavelet packet transform (WPT), and then wavelet packet entropy (WPE) of every surface EMG signal is calculated by its relative wavelet energy in every FB. WPE is regarded as the f...

متن کامل

Finger Motion Decoding Using EMG Signals Corresponding Various Arm Postures

We provide a novel method to infer finger flexing motions using a four-channel surface electromyogram (EMG). Surface EMG signals can be recorded from the human body non-invasively and easily. Surface EMG signals in this study were obtained from four channel electrodes placed around the forearm. The motions consist of the flexion of five single fingers (thumb, index finger, middle finger, ring f...

متن کامل

A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG) of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2014